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ABSTRACT

A generalized descent algorithm theory is developed for uncon-

strained minimization problems. Here a descent algorithm is defined

as a computational procedure where at each iteration a descent direc-

tion is determined and a single-dimensional search is made for the

minimum in the descer1 - direction. The theory is shown to be a gener-

K -alization of the three most comwn descent algorithm.'; gradient, con-

jugate gradient,and Fletcher-Powell.

Execution of the single-dimensional search can be computa-

tionally time consuming. Two additional algorithms are presented which

reduce or eliminate single-dimensional search time. The first is a

modification of Davidon's Variance Algorithm and requires a viinimal

single-dimensional search. The second is a direct method for 1i.'nimiz-

ing a special class of quadratic functions of the form

1/2!C1-12 + 1/2 k(a- M'x)2 .
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SYMBOLS

belongs to, is a member of; x(X: x is a member of the
set X

4 approaches, converges to

+ monotonically decreasing; f(xU) L: f(xn) monotonically

decreases to the value 11

[y,z] value of the continuous linear functional y operating
on the vector z. In a Hilbert space this is the inner
product of the vector y and.z. Also, a closed interval
on the real line, alternate to parenthesis, and referenc.es;
context will make usage clear.

I XII The norm of the vector x

U The union of sets

C is a subset of (or equal to)

matrix or vector transpose except in -Section II where
f' is tne derivative of f.

RN -iclidean N-space

D2 second differential operator

Wij elemený of the th row and j.thh column of th matrix M

Vj
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SECTION I

INTRODUCTION

1. BACKGROUND

In virtually all fields of the physical sciences.and particularly

ii engineering,the digital computer is the principal tool used in the

solution of complex problems. The speed and flexibility of the com-

puter has in many caces changed the nature of the problems that can be

solved, i.e., the solution must not only meet specific constraints but

must also he the best or optimal in some specified sense. There are

three interrelated tasks in the formulation of such an optimization

problem.

First, the physical system or .rocess must be descrlbed mathemati-

cc~ly or modeled in terws appropriate for computation. Second, the

measure of goodness, generally referred to as the cost function, penal-

ty function or payoff function must be defined to adequately describe

ho% one solution compares to another. Firnall7¾ computational methods

must be applied to find a solution which satisfies ti..- mathematical

model and cost function in such a way so as to extract the best or

optimum solution.

Generally such a problem can be cast into a constrained optimiza-

t1oa Droblem .uch as: Find the solution x which minimizes the cost

function f(x., vhile satisfying specific constraints described by

g(x)=O. Often the prtbJem can be simplified, conceptually, by adjoin-

ing the constraints to the cost function through the use of Lagrange

multipliers. Thus the constrained optimization problem is converted

1
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to the following unconstrained problem: Find the solution (x,X) which

extremizes the cost function F(x,X)=f(x)+Ag(x). The existence of such

Lagrange multipliers is a subject in itself.

Another method of solving the constrained optimization problem is

to restrict the problem to a subspace, an approximation to the con-

straints for example, and considering a related unconstrained problem

as an intermediate step in obtaining the solution to the constrained

problem. Since the simplified unconstrained problem may have to be

solved many times in order to obtain the solution of constrained prob-

lem, an efficient method of solving the unconstrained problem is essen-

tial. Finally, the solution of the unconstrained problem is often of

interest in itself.

The subject of this thesis is the computational methods which may

be used to arrive at a minimizing solution to the unconstrained minimi-

zation problem. It is tacitly assumed that any constraints are ac-

counted for through the use of Lagrange multipliers or other valid

techniques, such as penalty factors.

OUTLINE AND PREVIEW OF SECTIONS

For functiont v'hich have a continuous first derivative the most

common methods used to minimize the function, i.e., obtain the solution

to the unconstrained minimization ptoblem, are the gradient, conjugate

gradient, and Fle:cher-Powell algorithms. These algorithms are reviewed

briefly to illustrate certain common elements. Here it is assumed the

function to be minimized is f which is defined for each x in some space

X. Further, assume the gradient, g, of f at x also exists:

g(x)=grad f(N). For each algorithm only the initializations required

and the recursive equations are given. Convergence criteria or tests

2
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for convergence altiough important in computational applications are

ewitted here in order to emphasize those properties vehich these ajgorfth=s

have in comn.

Gradient Algorithm:

Initially: choose an arbitrary xo

Iteratively: set sn - -g(xn)

choose a=on to minimize f(zn+csn)

set X+1l--xn + ansa

Conjugate Gradient Algorithm: (Reference 5)

Initially: choose an arbitrary xo

set so = -gxo)

Iteratively: choose a = an to minimize f x.t+asn)

set xn+ = -x + arsn

on jg(xn4_l)f j2

llg(xn)117
sn+1 - -g(x,+l) + Onsn.

Fletcher-Powell Algorithm: (Reference 4)

Initially: choose an arbitrary xo

set Hn - I

Iteratively: sn - -Hng(xn)

choose a - an to minimize f(xn+asn)

set Xn+1 - xn + crsn

an n Xn+l - xn

yn=gCxn+l) - g(xn)

1 1n+l=n - Hyfylflnf' + ____yn

YAkyn GOnYn

where the prime (') denotes transpose.

3
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Each cf these algorithms generates a search direction. sn, for

uhich the function, initially at least, tends to decrease, i.e., for

which g' (xn)sn<O. A single-dimensional search is then conducted to

obtain the mninimu of f in the direction sn from the current point xn.

The location of the minimun of the single-dinensional search is chosen

as the next iteration point, xn+1. The differences between the algo-

rithms are in the method used to generate the search directions sn.

These algorithms and others which generate a descent direction and in-

corporate a single-dimensional search will be collectiveiy classed as

descent algorithms.

In Section II the proof of a theorem which is a generalization of

descent algorithms is presented. Specific applications to the gradient,

F.etcher-Powell,and conjugate gradient algorithm are given at the end

of the chapter.

NText, consider the problem of minimizing the quadratic function

f(x) = f0 + a'x + 1/2x'Gx. The gradient of f at x is given by

g(x) - a + Gx. Let h = -G-1g(x), assuming G71 exists, then

g(xfh) - a + G(x+h)

- a + Gx + Gh

- g(x) - g(x)

= 0

that is, x* = x+h satisfies g(x*) = 0, the necessary conditon for f

to have a minimum at x*. Note that G is the second derivative of f.

Clearly for a quadratic function, knowledge of G or the second deriva-

tive, or better G-1, greatly simplifies the problem of finding the mini-

mum of the function. Since many functions can be approximated by a

4



quadratic in some neightbozhood of a (local) ninintm, information about

the secood derivative, or its inverse, should enhance the abil!ty to

arrive at a solutics to the general unconstrained minimization problem.

The Xwtoen-Raphso algoritim is a method of fmction minimization

which utilizes the inverse of the second derivative. In addltior. to

the computational difficulties of obtaining the second derivative, this

method requires an initial estimate sufficiently close to the final

solution before convergence is guaranteed. Becaue of these diffi-

culties, several algorithms termed qu-si-Nwton methods by ?oeefl (-eference 22

have been constructed which iterativwly estimate the inverse of the

second derivative. The best known of these is the method of Fletcher-

PoweUl. Another more recent method of this type is Davidon's Variance

A1gorit-., not to be confused vith DL-.-d='s "ariaýle NPe.ric AUgO-rit~s-

which was the predecessor to Fletcher-Powell's nethod. A new deriva-

tion of Day, don's Variance Algorithm i presented in Section III.

Davidon's algorithm suffers some difficulties and Section. II concludes

with a modified version of the algorithm which, although saaesfhat more

complex, circuavents one major difficulty.

Whenever a method is available for obtaining the inverse of the

second derivative, particularly for a quadratic function, the minimiz-

ing solution can be obtained directly. In Section IV a method for the

direct solution of a special class of quadratic ninimization problems

is presented. The procedcre is based on the Rank-One method of matrix

inversion. The algorithm cont3ins a necessary and sufficient test for

the existence of an extremum and a sufficient test that the extremum be

a minimum. The speciil class of problems to which this method applies

are generalizations of the following form: f(x) = 1/21ixJ1 2 + k(a-m'x) 2 .

5
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In this sectfm the proof of a basic theorem on descent algorithms

is presented followed by applications to several familiar descent algo-

ritims.

Suppose X denotes a real normed linear space and f a real-valued

function defined on L For an arbitrary point xr of X, denote by S the

"level set" of f at xo, i.e.. S = Ux : f(x)<Ef(xo)). Me Frechet dei-iv-

ative of f at x vill be denoted f' (x) and if x*CX*, the topological

dual of X, the value of x* at x vill be written [x*, x].

Let * denote a bounded map from S to X satisfying:

(i) [f'(x), *(x); 10 for all xCS, and

(ii) given an c'0 there exists 6>0 such that

[f'(x), *(x)]<g Implies Ilfl(x)II"c.
Observe for later reference that condition (ii) implies that

f'(x) = 0 whenever [f'(x), *(x)] = 0 for if there exists an xi such that

[f'(xl), O(xl)] - 0 but f'(Cx) 4 0 set E = 1/211f'(xl)JJ>O then

[f'(xjl), *(xl)] = 0<6 for all 6 while llf'(X1)I I= 2c>c contrary to (ii).

Condition (ii) also implies [f'(x), 4(x)] is bounded away from zero

whenever f' (x) is bounded away from zero in the following sense. If

for 1xklCS, If'(xnk)I:>c for some c>O; then there exists a

subsequence of (x.k I and 6>0 such that [f'(xak), 4(xr~k)]>8.

Tn the theorem which follows, -ý(x) serves to define the descent

direction.

6



Ma~y of the i&des In the fao irvicS the*orem, -were stiie*ted

bT twio ==rs bT x. A- Gaidstteim (Fefe-reimes 6., 7.i-

particular the definition of 4 given abo'.e and the form of the con-

clusis of the cneoren are identical to those of Goldstein. Tne hy-

potheses of the theorem are changed to specialize to the case of a

single-dimensiotal search at each iteration-. Thus the proof of part

(a) of the theorem is changed. The proofs of parts (b) and (c) follow

Goldstein. The folowing ,xditional remark on the nypotheses is in

order.

En the current setting udhere X is a mor=ed linear space, the

assumption that V is uniformly coatinun3 on S nay be re?lzced with

the equivalent conditions that f is unifornly differentia•Xe and that

V' is bounded on S (Refere:n ,j. I).

Theorem I

Assume S is bounded in X, f is bounded belor' on S and the Frechet-

derivative fV of f exists, is unifornly continuous on S and bounded on S.

Set xn+1 = xn when [ft(xn), O(xn)] 0 0, otherwise choose 0=0n to

aininize {f(x, - P#(x)):P:O) and set x,+I = xn - 0nO(xn). Then

(a) f(xn) IL, f' (xg)4O,

(b) if {xn) has cluster points, every cluster point z

satisfies fz)=L, f'(z)=O.

(c) If f' has finitely many zeros on S, S is compact, and

l - xI I1o, then the sequence {xn} converges.

Proof

(a) For xfS and f'(x) 1 0, jf'(x), ý(x)]>O. In general, since f

is differentiable,



-ff(x). h) = Ila- f(xfth) - f(x))
twOt

= f&(ftx-h) - f(x)),

so in partiitular,

o <[-'(x), 4(x4 = Lus !(f(x-p#(x)) - f(x)).

By the uniform differentiability of f there exists a 0o>0. independent

of x, such that

- f x))

so,

O3f(x-p 0o(X)) - f(x)

or

f (x- 0 W(x)) <f (x)"

In particular for x %xES, f(xr - Po*(Yn))<f(Xd)_f Cxo).

Alsc for f'(x) # 0, [f'(x), O(x)] # 0, hence llCx)ll00. Since S

is assumed bounded, there exists a pa>0 such that for all p>pa,

x - P*(x)9tS. For on the contrary assuaption, for every N, no matter

how large, there exists a pN>N such that y = x - PN (x)CS. Then

jjy-xfl = pNJi0(x)Il>NII4(x)II is unboun'ed which contradi~ts the

boundedness of S.

Now for xnES such that f'(xn) 1 0, F&p) = f( X- )) P- f(xn)

has a minimum at PnE[O, raI since F is continuous and 10, o.] is compact.

Furthermore, On # 0 since F•po) = f(xn -OoO(xn)) - f(Xn)<F(O). Thus

the sequences [on) and {xn) are well defined and f(Xn+i) = f(xn -

0n4ý(Xn))<f(Xn) which implies the sequence Ixn) S, and the sequence

8



If(x%)) is strictly decreasing. Sine f is assumned boded belm

To shev f' (n) -0, we suppoe the contrary, them there exists a

subseouence %z) C IN.) such that f', (x.)i ore aa ro eo

ibcda Implies that a rubseuence of [f', d is €a3*o)wa is

bouded away from zU2o. Vithout less of generality denote this

subsequemce by (x%). MTen there exists an CO swc that

#(X)]- " (f(znk - P4#(xzk)) - f(xnk)). Since f

Is ualforely differentiable, there exists a p,>O, independent of x

(i.e., xnk), siRh that

•o 1

2 "b Ufok- •b"13, " - •,,k•

or c:%. ,.,,€x •: -%*( ,•)) - •

Then f(xý+ 1 ; ( f(xn - PtX#(X )) < f xnk)-

Since f(x 1) .& L,

or f(x) - f(xnk)<.c.f(xnkl 1 ) < f(x .l -_

e f(xn k < f(x3c% ) - 2 <bfn

< f- - b2o

< f(xn) - k PbCo

2

This con:radicts the assumption that f is bounded below, hence f'(xn)-O.

9



(b) If z is a cluster poInt of 1%n) •here exists a sbsequence

(xm)C~xn3 ) s us tha t%-* (in norm). Since f aad f' are continuous,

f ra)-L and f'(xn)4O, it foallows that f(z) = L amd f'.z) = 0.

(c) Since f'(z) - 0 for every cluster point z of [xe), the br of

roots of f' on S is e•ual to or greater than the nudber of cluster

points of ix ). If V has a unique root z on S then {xn converges to

It; for othervise, since S is assumed comact, there exists at least

oe cluster point z1 of [xa} in S uhere f'(zjL) - 0 (by (b)). If

zI f z, the root of f' is not unique. If the number of roots of V on

S Is finite then the nunber of cluster points of Uxl) is finite also.

let zj, i - 1,2,...,k be the cluster points of [xz., let

C= Min-lizi - ijll: # # J, ij = 1,2,...k), let S(zi,c/3) denote the

open sphere of radius c/3 centered at zi. Since S is assumed compact
k

the set fx{) -U S(zi,/3) contains a finite number of poimts, say a.
1-1

Since llj.t - x-11, by assumption, there exists an N such that

11p1- xplI dC c/ for all p'N.

Now, since the zj, i=l,...k are cluster points of {Ix., there are

members of {xn} in each S(zj,c/3) for which a>'N Therefore fix n>N such

that xnCS(zi, c/3), for some fixed i, and xn0 ri ;(zi,c/3). Let Xq

be thz next member of the sequence IXn1 (i.e., q'n) such that xqCS(zj,

c/3), for some j i i and xq-jitS(zjc/3).
Since xnCS(zi,c/3) and XqCS(zj, c,3), i j J, Ijxn - T.jj>c/3.

On the other hand, since n, q>N, we have

ilxq - x nIli<lxq - Xq-lf + IIxq.. - Xq_2 11 +

+ 1Ixf+2 - xn+1li + llxn+-- xn!
Sq-1 <q -1

I!%X,+I - l - = (q-n) = C
p- - 3m 3m
p~n pn



Now the set of points Xn*.1, x,+. --- , L eloo ro :he set

k
(n) - U S(zL, e13). 3ut there are (q-1) - (n+i) + i - q-n-l po~nts

i-]L

ft the set fxn+I, --- , xq-1), and by supposicicua a points in the set

k
uxu} - U S(zi, £13). 7hus >_nŽ--l. Ou the other hand we have just
izi

shown q-n>n, thus t-n-l>am-1, that is to say q-n--- = a. Heuristically,

k
all the points of the set {xn) - U S(zi, r13) have been accounted for,

i-i

or uused up. But by the sane arguneut, there exists an n'Zq and a

q'>n' such that xtCS(zj, £!3) and xntj+ 1 _S(zj, e/3), for th j de-

fined by q above (i.e., for which x. C S(z c13)), and x4,.rS(z,, £13),

L #, and Xq,_lf. (zt, £/3). Then there are again q'-n'- a = , points

in the set {xn.+*, x nl+2, "*, XqI.jl which also belong to the set

k
Ixn - U S(zi, c/3). There now arL 2a points in this set which by

I=1

supposition contained only a. This contradiction persists unless we

suppose {xn1 has a unique cluster point.

Cexments on the Basic Theorem

The first conclusion of the theorem, f(x,)4L, can be obtained

with the weaker assumption that f is differentiable and without the

assumption that * is bounded, in which case both P. and Pa are dependent

on x (or xn). However, both uniform differentiability of f, which fol-

lows from the uniform continuity of V, and boundedness of 0 were used

to assure the existence of a Ob which uniformly bounds the differential

away from zero in the proof leading to f'(xn)-O.



If X is finite dimensiinal then S being closed ad boumded is

necessarily co anad 13C% s -as cluster points.. Bece conclusion

(b) of doe tbeorem apples.

3. P__M_•CO-_•FI W ME USC 7E•M TO CGM BRSC ALR-E

In the applications sbich follow, the boundedness of # vill be de-

rived frce the bomidbess of the Frechet de-rivative f' cf f on S. In

particular, assume m that X is a Hilbert space so that f' (x) can be

represeted by its gradient Vf(x) in 1- Then also since in a Bilbert

space emery bouded set is weakly compact, the boundedness of f' on S

follows from its continuity on S(Beference -3,•p. 19)-

Corollary I

Let Q be a positive definite continuous linear operator on X,

let #(x) - QVf(x), then Theorem I applies.

Proof:

Since f has the required properties, all that remains is to

show #I bounded and satisfies conditions (L) and (ii).

By assumption V' is uniformly continuous and bounded on S. This

together with Q being a continuous linear operator on X implies * QVf

is bounded on S.

Q positive definite Implies there exiszs a =>O such that

alIzI1 2 <.jz, Qz] f-:,r all z in X,

henze

[f'(X), g(x)> = [f'(x), Qf'(x)]_ If'(x)li 2 _o and condition (i)

is satisfied.

To show condition (ii) assume an c>O and choose 6=mc2. Then

[f'(x), #(x)], 6.=mC 2 implies mllVf(x)I2<[IVf(x), QVf(x)J< 6-•_c 2 or

I!Vf(x)J I<C.!Iv•()lli2



In order to demonstrate that the theory develo•ed thus far is a

geeralization of descent algorithms, the lheorem and Corollary winl be

applied to two ccmwn algorithms; the gradient and the Fletcher-Puell

Application to Gradient Algorithms

Let Q in Corollary I be the identity operator, i.e.,

#(x) = ?f(x), this is the usual gradient algorithm.

The operator Q need not reain fixed so long as it is uniformly

positive defiraite on S. ahat is to say there exists a constant m>O,

independent of x, such that If'(-), #(x)] = ff'(x), Q•x)Vf(x)LIpllvf(X)1I2

for all x in S.

Applic'--oc to Fletcher-Powell

Let X be finite "dnsicnal, let Q - QOc) - EL as defined

by L Fletcher and M.J.D. Powell in Reference h. Using the

algorithm of Fletcher-Powell it is easy to prove Hk remains positive

definite at each iteration unless the algorithm teminates in a finite

number of steps. Then 4(x.) = HnVf(-x) satisfies condition (1):

f[f'(xn), 4(Xn)]>O. Now if the Hk are uniformly positive definite, or

if there exist constants m>O and p>O, independent of k, such that

[x, Hikx]> ml lxl P, then condition (ii) is satisfied. For given an

c>O, choose 6=mcP, then mJf'(x)jjI=jf'(x), Hkf,(x)]< 6=mcp implies

I jf'(x)jj<c. Then the theorem applies to the Fletcher-Powell algorithm.

Furthermore, since S is closed and boundca', it is compact, and the

sequence {xkl necessarily has cluster points so (b) of the theorem ap-

plies ithout further assumption.

In the above aFplication to Fleccher-Powell's method and in the

following corollary, the function ý is not uniquely defined as a

13



function from S into IL lather, 0 is defined only on the sequence zn)

ad its value at an arbitrary x in S depends upon v.ich sequenze x be-

longs to. However, the properties of * used in the proof of Theorem I

did not depend on # being defined anywhere ez-cept at points of the ce-

quence {xn;. That is to say the conditions (i) and (iU) need hold only

at the points of the sequence {xU). Within this context the search

direction will continue to be denoted by -#(xn).

Corollary II

Let #(xo) = Vf(x,) and

#(xa) - Vf(xa) + Ki#(xn,.l) for n - 1,2...

where I1nkjr<l, then Theorem I applies.

Proof:

Clearly conditions (i) and (ii) are satisfied at xo for

[f'(x 0 ), *(xo) -= IIVf(7o0)1 2 >0, and given c>0 choose 6 - C2.

Claim [f'(x~.1 ), *(Xn)] M 0 for n = 0,1,.... Since pn is

chosen to minimize (F(p) = f(xa - p#(xn)) - f(xn): p>01, F'(pn) * 0.

But F'(p) - - [f'(xn - p#(xr)), *(xn)] and at p-pn' Xn - Pnf(Xn) -Xn+l-

Hence F'(pn) = - 0f'(Xn+l). f(xn) - O.

Then for n = 1,2,...

d[f'(x-), (x) - [f'(x,), Vf(xn)] + Kntf'(xn), O(xn-_)]

= [Vf(xn), Vf(xn)]

- IlVf(xn)11 2>0.

Hence again, given C>O choose 6 = c2 then [f'(xn), *(xn)] < 6 implies

IlVf(xn)II = JIf'(xn)jj < c. Thus conditions (i) and (ii) are satisfied.

To show boundedness of the O(xn) consider

I*(gxn)jl2 = [M(Xn), (xdn) = [Vf(xn), ((x)1 + Kn[x(-_), ()]

- IIVf(x.)l 2 + Kn[O(xnl), *(xn)], and

14
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[ 4() (xn)-(1n ] fVf(x11), •(xn:.l)] + Kn[If(xn- 1 ). f(x,-l)]

-_ K I(x_--i)li2.

Thus, I1,(xn)!12 = IlVfox)112 + Kýll0(xn._.)ll2.

Applying this relation recursively yields

II*(xn)112 = IlVf(xn)11 2 + KgllVf(xnl)12 + Knli(•,xn_2)12)

= IlVfxn)11 2 + KI IVf(xn_l)ll2 + qKý-111I(xn_2)1 12

I1(xn)!112 IlVf (2n)112 + KtIl2f( xn._l)l12 + KK_ IlIVf(xn_2) 112

+ "-" + ) -K l ..' KjllVf(x )112

+ KýK-1 ... KjKjllVf(xo)ll2"

Since f'(x) is bounded for xCS let M sup IlVf(x)ll
xCS

then
110(n)J1!2 <. fl+ Kg + KýKý_l + .. + •Kg 1 '" qKj)M2H.

Also K I r < 1, so the series

U+.Ký +.+ - + K •Kg1 ... K2Kj1

converges. Hence 10(x,,)112 is bounded and therefore 4ý(xn) is bounded.

For a trivial application of Corollary II, Kn may be set to zero

for all n, this then generates the usual gradient algorithm. The fol-

lowing application is of much more interest.

Application to Conjugate Gradient

Let Kn = [Vf(xn),Vf(xn)]" in Corollary II.
lVf(Xn.llVf(Xn-.l)]

This is the 8 nl of Fletcher-Reeves (Reference 5) for X = Rn, and Lasdon,

M-itter and Warren (Reference 10), for X a function space.

15
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The condition IKni r < 1 may appear overly restrictive particu-

larly in the light of the paper by Lasdon, Mitter and Warren which also

is set in a Hilbert space H. Unfortunately, the proof of Lasdon, Hitter

and Warren contains one minor but signficant discrepancy. The proof of

their theorem is reproduced and corrected, to illustrate the simi-

larities of the constraints which must be imposed on Kn or 0,_1.

Theorem 3 of Lasdon, Hitter and Warren

If: 1. J(u) is bounded below,

1. J(u) and g(u) - grad J(u) are continuous,

3. D2J(u,hh) exists and ID2 J(u,h,h)Il L mllhlRor m > 0 and

all u,h in R,

4. (uk) has a cluster point u*,

then the sequence fuk) formed with arbitrary uo by applying the con-

jugate gradient algorithm to J(u) has the following properties:

1. lim J(uk) - JCu*),
k'a

2. 1rn g(uk) - g(u*) - 0.
k-ý-

Before presenting the proof the following three remarks are

pertinent:

1. Here D2J(u,h,k) is the second differential of J at u.

2. The form of the algorithm is exactly as given in Section 1.2

evcept here the independent variable is u instead of x.

3. From the above proof of Corollary II it follows that

(8kSk] - -HIg 2 and [s kgk+l] = 0 for all k.

Corrected Proof of Theorem 3 of Lasdon, Mitter and Warren

From Taylor's Theorem,

J(uk + ask) = J(Uk) + afgkIsk] + 1/2a 2 D2 J(&k(a),sksk)

16



ahere .(a) belongs to the line segment joining uk and Uk+@Sk. Then,

Using lsk1 ,g = -IIgkIl 2 and assumption 3,

3J(uIlIosk) < J(Uk) -al lfki 12 + I/2a2-l ISk! 12.

Since ar0 k minimizes J(uk + ask)'

J(Uk + aksk) = J(uk+l) <. J(uk +ak)

<J(uk) - -II9gk 12 + -Iski 12.

At this point Lasdon, Hitter and Warren assume l 1skll = l lgkil

in their proof of this iheorem. This is clearly inconsistent with

[sk'gkl = -I 1gklI 2 for by the Cauchy-Schljarz inequality

I[skg-kl --i lskll 1IIkII w1'are equality holds if and only if sk is a

multiple of 9k. Thus l 1gk2l = ilskPgkII < llskll '.gkIfor

l ll <- llskll" Specifically, equality holds only when k=O

(i.*e., so = -g0) or gk = 0 in which case the solution has been achieved.

Proceeding more carefully, observe that sk = -k + Ok-lSk-1'

liskIl 1 Sk,Sk] = -[sk,gk] + ek-llSk'Sk-l1

"- 119kI12 + Ok-itsk'Sk-13

and [Sk-lSk] -[Skl1gk] + Ok-l1sk-lsk-i]

or Ilskll= Illl+02 + k~- IIsk-lfl."

Then

J(uk+l) < J(uk) 11 -1l9k0l + !(Ilgk1l + 1s-. Ilsk-l 1 2

2SJ(uk) - !•llgkll +-2-•,' I I sk -lI

Likewise,

J(uk) I J(1-k-1 2 2 , IISk-2112,

17
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hence
j("k+l) ;I j(uk-) - •-11Igl_-1l2 + •-e-21 1-zl

_ lilgk112 + _lIIk.k- _1112,

or in general,
k k-i

J(Uk+l) ,1J(uj) - : 11 112 + 112.
izi 2E 2lsl"

or
k- 0l k

J(uk) <J (uo) + JIIs,11I - I Ii 12

1=0 1-0

k
"J(U0 ) - 112.

1i,.

where z. I -S H?
2ra 2a

Since J(u) is bounded below lrn i exists and is finite, that is to
k-p- i=1

say the series Yzi converges.

Sice~z =~II~I 2 m _111 it follows that2.
(Reference 13) if the series £zi is absolutely convergent,

then each series ImllgiII2 and yBflIjsi_lI2 is convergent,
2m 2mconvegent which

implies IIgi o and B•_.lls±_jll4o. It also follows that

Ils6,12 _ I1g1l2 + 02 Il sii 1l1240 from which it follows that

I sill is bounded. On the other hand if Jzi is conditionally con-

vergent (convergent but not absolutely convergent) then each series

2m•Ilg1l2 and 2m -llsi_.ll2 is divergent. Of course it still may

happen that Iiig÷j-I~O and e..lls•_.; 2•O (and hence si is bounded).

One way to assure Izi is alsolutely convergent is to assure

zi.o, that is 2m zi = 1Igi,1 2 - 82_ll_:il 2 >o. But

Ilsi112 = IIgIl 2 + S2-_1 lIls,-ll2 hence 2m zi = 211gi1 2 - Ils1i12>0

18



requires 11SIIl2 <2__ 2llg12 (recall I11!gl2 < II.sll 2). 3C

.s 112 i I IS. 12l!1%11 2 + !!011 6i! 11;12
-IIsiI12 (1 + 0 !!'°1!2)

since -11g)112/11%112.

Slillarly,

Ils212 " Ig2112 (l + ]g -'T112

" 1192112 (1 + $I(' + 0d)

- 1192112 ( + 01 + 1 0 )

or in general

I 1 = I1%! (I" .+ + 8 kfk.l + "." + • -l "'+ 0 "

Now if 0 < r < 1/2 for all i,

1. + 1S- < 1 2k + + ekokI + -+ kk- ... - 1---r 1-1/- 2

Then Ilskil2< 2IlgkIl 2 , and-zk> O, and absolute convergence of Tvi-

follows from its convergence. The condition Bi I r < 1/2 is stronger

than the condition IKnl < r < 1 assumed in Corollary I1.

Application to Conjugate Gradient in RN

The classic proof of the conjugate gradient algcirith- f.w finrtinr

minimization in finite dimensional spaces (RN) is based on the Gram-

Schmidt Orthogonalization procedure. Originally the method was

developed for the solution of systems of linear equations. The ex-

tension to the problem of minimizing a quadratic function on RN is

well-known. In theory, the conjugate gradient method finds the mini-mum

of a quadratic function in at mot N steps. However in prar'tice, be-

19



czwe of round-off error, I+1 sceps are ued to obtai' the "exam"

solution.

Applicalice of the coojtgaze gradiemt algor-fel to the problem

of mlrifizieg a arbitrary fuction in L usually follos the sae

procedure, viz., ccojngzte directions are used for XI- steps and if

the ninimm has not bee obtained, the algoritdu is re-started with

the last best estimate (xTL). In ters of Corollaxy II, this means

':+1- -a=K2 .... 0. This condit-o2 may be used to impose a soe-

what weaker but less instructive condition on the •'s in Corollary 11,

specifically

(l + 2L + 2 K + ÷ + 2 . .'" K A etc. for

each sub-cycle. Then li,(x)ll 2 12 A 2 for al k here llVfxi)l< H2 .

As a final remark it should be noted that in Corollary II the con-

dition IK.I <r<l need not be satisfied for all n but only for all n

beyond some point. In the cc-Jugate gradient algorithm

l= - T2  < r < 1 implies the gradietit not only converges to

lVf (x.J_) I2
zero but lIVf(x•)II forms (eventually) a strictly monotone decreasing

sequence.

20



A patticala property possessPA by botk the method of comjmate

gradients ard the method of Fletcher-Powell is that either method ob-

als the inimum of a positive defifi-e oaadratic form; viz., mini-

mizes f (,) - fo + a'x + 112 x'Cx, x4ý, is a fiitre umber of steps

excepting round-off errors. Ths is accoJisbed in the conjugate

gradient algorithm by meai of the Gran-Scmidt ortbagoo,-l•t•io

process (efe.re-ce 1)- In the method of Fletcher-Powell, this is

accomplished by generating the Inverse of the matrix G, specifically,

S- 9-1 . In this sectic. iother method for generatig G71 is pre-

sented u-acd &es not require a single-dimensiczal search ior a minin-m

as do the methods of Fletcher-Powvell and conjugate gradients.

Although this author arrived at the method independently, the

algorithm is essentially the same as Davidon's variance algorithm (Fe-fer-ence 3).

Although Davidon's proofs are vallI, they provide l.ttle insight for

the user on how the algorithm is structured or why the method works.

The derivation presented here clarifies the structure of the algo-

ritha by emphasizing how the structure leads to the desired properties

at each iteration. Finally, a minor change is incorporated into

Davidon's algorithm which circumvents one difficulty which may be en-

countered when the algorithm is applied to a computational problem.

1. BASIC RAliK-ONE METHOD

In Reference 15, Herbert S. Wilf presents a methoa for matrix inversion

based on the equation (A + uv')-I = A -1 - A7uv'A

I + v'A-u

iihere the prime (') denotes matrix (vector) transpose and it is assumed

A71 exists. This equation is easily verified by computing
21



(A + )(A-a ( - a- [

bce Met + '•w differs from A by a marix, =w', of rk ame. ee-

fore, the ab~e imwersi ce tenique mod the altor-Itba &evekged beiwv

m well be ••IleJ I2k-one methods.

Fo11wiog ii~f, s=pp C is written in the forn

-1 13
C - C +~ uivw wd let Ca be the partial stas C. C. +Ia uzvand

D demnote the partizl st Inverses

TbM Ca1 Ch + (C07 + !
Th= en + +

a.nd = (c 0+ ",,+j ,) 1

,i-i
. - (C + - I

Mel .. + I 4-- UIV -1

=(C" + u,+,C";+,,)-

-D - nu%+IV 1D0
I + vlu+

I -1It follmis that D1, = C1 - (C0 + XIv 1 ) u 1 providing all compuca-

tions may be carried out. Obviously the procedure fails if the denom-

inator term 1 + v; 1 Dnun+1 is zero. The implication of such a condition

can be deduced from the results of the following Lema.

Lemma I

Assume A is nonsingular, then the matrix B = A + uv' is singular

if and only if 1 + v'A-lu = 0.

Proof

Necessity: Assume B is singular, then there exists an x j 0 such

that Bx = Ax + uv'x = 0. Then A-lBx = x + A-lmu'x = 0 and
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'Al (I v' €4-w'A-)iO. - 0 v-x f O, for 3t = Ax - 0

but A is a msizzlar. Therefore, Q + v'hi) = 0-

Svffclemcgr: Asme I + + vk" - 0 ad sex x = A71= i 0 f-r motr-

wise a = 0 ai w' Ak! 0 wtifcf c=Mnew-ices I + V~-= 0.. Then

Ix Am 4- uw'x

- u + U"A-Cl

- ( (I÷ v'A-lu) u

= 0.

AM algorithm vii be cast!ructed for ninizi the quadratic

fo,• f(x) = fo + a'x + 1/2 x'GA, xCO and G a positive definite sym-

metric matrix. The method is based on the above technique for generat-

In 6-1. Let D = Cl" where CO is an arbitrary positive definite syu-

metric natrix such as the identity I. Pick an arbitrary xo and let

go - a + Cxo = grad f(xo). Assume go # 0 for otherwise xo is the required

solution. Set ao =-Dogx, = xo 1 oo, g1 = grad fx 1 ) = a + GxI and

yo = g 1 - go. Then gl = a+ G(xo+ co) = gr + CGo and yo G=d. An

improved estinate C1 to G is sought such that Clao = Coo yo, where

C1 has the form C1 = Co + ulV'. Since G is s)y!netric, being the

Hessian of f, the added constraint ul = v, is imposed to assure s)y-

metry of CI. Then the condition to be satisfied is Cloo = Co 0o +

uUto = y or u1 Y=o - 0C° But -CoGo = -Co(-Dogo) = g., so
Ulo

= gl kg1 . The value of the scalar k is easily determirned fromu1 I a =o g1Ulo

kg 91 = oto be k 2  and C1 takes the very simple form
U go

C 1 =C 0+ glgl Applying the rank-one inversion formula to C1 yields
gl~o

23



+ SiO , 0 xi + gjDA 1

But Z4D& jO- yo)

-w - gDY 0 - sja09

D G v
SO EiD D- C Ilo

0 jj

Just asCO '.Yo D~yo = Gofor Dy 0  Doy - D69 19MV0

- D0 (93L - - Drg D

or simply by applyling Dl -C6' to Ciao y0 .

Since Dlis the current best estimate of G-,it is reasonable to

cootinue the process by comPuting 01 Im-D~g1 , x2 ' XI + jL

92-grad f(x 2 ) and yl = 92 - 91and considering an inproved estimate

C2 to G obtained from C1 , 92 and y1 in precisely the same manner. Hare

generally suppose xn,Dngn and Cnhave been obtained- Set

111+1 - n + on,

gnl= grad f (xn. 1 ).

and Yn g~ n=Gn

Define Dn 1 = Dn -D nll+n

and Cnl= C+ gn______

g n+lo

Dnln= y-Dg~ = Dnn1- Dngn - =nn~ an = Glyn.



Am Laport~amit proe-my of tre .d~grithn is if bg a 1 o

an abirn-Axy y Ebm Zm,. DyTI~s propmerty is denvotstrated by

sbowiig Zg1 -LDM - 0 asfollus.. Sin go*. - Sa - Gi.Mj - X)

an -% - = C'"(gm - to) - .

or D"gn - -ga - 0.- 5)

=(D. - C'(.l-g)

anid L+D,,y = {m• - gn)'(I. - C 1 )y- 0.

That is to say, if D agrees with C-1 for same vector y, then so does

- + - a - Gx-)

- Xn - x = -n - -Dngn. But also, Dy. = Dgn+l - Dg.n. there-

fore Dngr÷+I 0 and if D. is non-singular gn+.l - 0 which in turn implies

Xn+1 is the desired solution.

By Lemna I, Dn+1 exists so long as the denominator (1 + v'A-lu in

the Lemma) does not vanish. In the case of the Dqs, Dn+I exists so long

as g;+lcn + g;+iDngn+l = g;+iDnyn f 0. Furthermore, Cn+1 can be ob-

tained from Dn+l by applying the same inversion technique, hence the

denominator in the expression Cn+I = Cn + gn+ign+l must not vanish.

8 n+1on

There are then two requirements for the existence of Dnl = C4l1 and

cn+I = D; 1 , namely: g;+,Dnyn f 0 and g' 1 % # 0.

In the following it is assumed, for the moment, that these require-

ments are satisfied.

25



The algorid sy be gemeraif•ed to oe for inisisizinc a

adbitrary fnctiom f defined o * as folmos:

Iitially: choose as arbitrary xo, set Do - I

amd compee Z 0 grad f(r.).

Iteratively: Set an - -Dg. and Dx 3 L -1 x + on-

comutegý. -grad f (xnf1 ),

se - g 3+1 - gn and

IDg g'nf D4lnte~~~~~ Dl-D + +

As an algorithm for alnaizing an arbitrary function, precautions

zme be t-Pe to avold insta=ces ihere the denoinator w-11 vanish.

In additioc, for an arbitrary function, Dn may not be positive definite

and hence an - -Dngn say not be a descent direction. Therefore, addi-

tional precautions must be incorporated into the algorithm to assure

applicability to arbitrary functions at the expense of increased com-

plexity.

The recursive relation for Dn+1 may be rewritten as follows:

Do+, - DDgn;lg•+1 DI

or DnL - D + (In-1) .D ngn+1 g;ý 1 D
n ~ ~+1 n g nDg1

where -A = 1-- _'___ ___

This form for Dn+1 is essentially the recursive relation of Davidon's

Variance Algorithm except tha'. 3\ is cho-en to assure both Dn+i and

nDfI (i.e., Cn+I) remain pvsitive definite at each iteration, where tiie

26



above relation for -I is used whenewer poss$ble. Specifically, 1, is

chosen such that ='DnzQ'D, 'Vx for all z, where O<z<1<O.

As rDavidoi's Variaice Algorichn is presented in Reference 3,

Dn+.1 (or V in Davidon's notation) is coerstructed from a test value x*

for xn+]. If f(x*) I f(xn), then xa is taken for xa~L, that is the

estimate x' is discarded. As pointed out by Davidon in a footnote

e~r~e3, -a. -416) ti-be alvrit:- c-~ becoame trap-ed± in a lo--p. indeed,

although the poor estimate xr is not used, the gradient of f at x* is

used to modify the estimate, Dn, of 9-. Since for most problems f(x)

can be computed such more rapidly than g(x) = grad f(x), several test

computations of f(x), without the corresponding gradient, can be made

without undue increase in computation tine. The following modification

to Davidon's Variance algorithm provides for a search fcr an improved

estimate for x at each iteration, if necessary, using several computa-

tions of f(x) before computing g(x) and updating the estimate of G-1.

Since this search introduces a major change in the algorithms, the form

of the general term is re-derived as follows.

Assume xn, gn, Dn C 1 have been obtained where gn - grad f(xn),n

Dn is positive definite, and f(x) fo 4- a'x + 1/2 x'Gx. Pick an a. such

that f(xn - cnDngn) < f(xn) using an 1 1 whenever possible, otherwise

an is reduced (for example an = 1/2, 1/4,...) until f is decreased.

This is possible since [f'(xn),-Dgn] = -g'nDngn<O. Set oa = -trDngn,

xn+1 = xn + an and compute g,,+l = grad f(xn) = gn + Gan and Yn - gn+l

- gn = Gon* An improved eAimate Cn+i to G of the form Cn+i - Cn + unuA

is sought such that Cn+ln = 6on = Yn gn+1 - gn" As before,

Cn+lan = Cnon + Unn = 9n+ 1 - gn from w;hich un = gn1 l - -
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or _ _+l - -%)go

fnn

since Cno. -OnCnnn) = -%g,

For clarity, set vn = gn+m - (. - ci)g, and observe un has the form

k Tuen =I h= e n andUnn Vn~n = Vnln = k,-•" uk .•o vn"on/ k v.o/k

from which k2 = vn'on-

Now C,+I may be written C,+, = Cý, + VnVn and an application of the

rank-one inversion formula yields D,+j. = C-a1 l n - %nVn
v,'o% + vn'DV

Since v,'Dv = vl.'[g.. - g1 + Dv vl

- v'Dnyn + %vnDngn

Dn+ 1 may be simplified to Dn+I -Dn - DnVnDy.

This form of the algorithm can be shown to have the same properties

as Davidon's form. For example if D% agrees with G-1 on y, i.e.,.

Dny - C-l- a, then so does D,+1 . This is demonstrated, as before,

by showing VADy = 0 as follows:

Dnv, - Dr,(gn+l - gn + a'ngn) - Dn(gn+l - gn) - -"n

but on = xn~l.- xn G-1 (gn+l - gn), so Dnvn = (Dn - G7l)(gn+l - 8n)'

and vnDny = (gn+l - gn)' (Dn - G-1)Y = 0.

This form of the algorithm also suffers the difficulty of Dn+1 not

necessarily being positive definite at each iteration for an arbitrary

function. This difficulty can be avoided by applying Davidon's method

of assuring boundedness. D,+1 may be written as
Dn+1 .Dn - gn'+iDng___n+l) DnVnVn'DnI" VnDnYn " gn'+Dngn+l
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or Dn+. = Dn+(An - 1)!DnvnvnDn
g +,Dnga+l

where n= - gn+lDngn+l
nVn nYn

Following Davidon, An is chosen by the above relation whencver possible,

otherwise such that a<X= n< where O<a<l<0<w in order to assure

ax' Dn+ix <_x'Dn XJX'DnX

for any x.

3. COMPLETE RANK-ONE ALGORITHM FOR FUNCTION MINIMIZATION

The complete algorithm proceeds as follows:

(1) Initially set Do = I and pick a, 0 such that O<a<l<$.

Choose an arbitrary xO and compute f(xo) and g(xo) - grad f(xo).

(2) Compute f(xn - r.Dng) for an - 1, 1/2, 1/4, ... until

f(x. - %Dngn) < f(xn)

(3) Set an = -anDngn and x,+ 1 = xn + an

Compute gn+l = g(xn+l) = grad f(xn+I)

and set y n gn+l - gn'

Vn - Yn + angn = gn+l - (1 - an)gn

and Yn - _+inn+l

v DnYn

(4) If Yn>l - a set An - a,

if Yn<l - $ set An =,

otherwise set An = 1 - Yn.

(5) Set Dn+i = Dn " (On - 1) DnvnvnDn
gnl+iDngn+l

(6) Repeat steps (2) through (53 until selected error tolerances(s)

is (are) satisfied. One or more of the following error tests

may be used:
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IIQ+II11 g<+I'ngn+l < C2

f(x) - f(x+) < C nd Ind l

It is interesting to note that any algorithm which generates re-

cursive estimates to the inverse of the Hessian as do the Fletcher-

Powell algorithm, Davidon's Variance algorithm, or the modified

Davidon algorithm presented above can be expected to exhibit numeri-

cal difficulties whenever the Hessian or its inverse is singular at

the minimizing point. The following examples illustrate simple problems

with this property.

Consider the problem of minimizing f(x,y) x 2 
- y 4 . The first

and second derivatives are Vf(x,y) = 2x 3and

[0 
4y

3

V2f(x,y) _ [2 0]

12y] .

Clearly the minimum is at (x,y) - (0,0) where Vf(x,y) (0,0)' but

V2 f(0,0) -[2 :]is singular. Also,

Any algorithm which attempts to estimate V2 f(x,y)- 1 can well be ex-

pected to have terms which tend to become unbounded as the solution is

approached.

For an example of the inverse condition, consider minimizing

f(x,y) = x 2 + y 4 /3. Then, formally, Vf(x,y) (2x3/3)

and 
V2 f(xy) 

=[2 0 . 0y/3]

Clearly the minimum is at (x,y) = (0,0) and in this case
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In this case, any algorithm which attempts to generate V2 f(OO)-1 can

be expected to become singular.

In the usual formulation of the Fletcher-Powell algorithm the

matrix Hr. is tested at each iteration and if any elements become too

large or too sma]l the algorithm is re-started. Thus, in the worse

case, the Fletcher-Powell algorithm would de-generate into the usual

gradient algorithm. Davidon's algorithm, both the original and as

modified here, provide assurance (through aj) that the computations

can proceed by making conservative estimates to the inverse of the

Hessian.

The relative speed of Davidon's algorithm compared to conjugate

gradient and Fletcher-Powell algorithms was reported on in Reference

11 . Those results indicate the Davidon method is the superior

algorithm for the solution of most of the test problems considered.

In the few cases where another algorithm was found superior the

differences were either marginal or, as in a few cases, the Fletcher-

Powell algorithm arrived -t an e-xact solution.
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SECTION IV

DIRECT APPLICATION OF RANK-ONE

Although rank-one methods have been used to construct algorithms

for minimizing arbitrary functions, the direct application of rank-one

to minimizing special classes of functions has been overlooked. Con-

sider, for example, minimizing the function

f(x) = 1/21IxIIL + l/2k(a - M'x)2

where x, mERn and k, a are scalars. The gradient of f at x is

Vf(x) = x + k(a - m'x)(-m).

The necessary condition for f to be minimum at x = x* is that the

gradient (Vf(x*)) be zero. Furthermore, since m'x is a scalar, (m'x)m

can be rewritten as m(m'x) = (rnm')x, where mm' is the outer or tensor

product, i.e., an axn rank-one matrix. Use this fact and set the

gradient to zero to obtain

x* - kam + kmm'x* 0

or (I + kmm')x* -kam.

The rank-one matrix inversion technique (Section III) is applied to

obtain directly

x* - (I + kmm')-kam

S(I - kmm' )kam= • I + km'm

ka
- 1 1 km'm m.

More complex forms can be handled with little difficulty. Let M

be a m x n matrix, a an m-vector and consider minimizing

f(x) = 1/211xll n + 1/2klla - MxII2Rn Rm

- l/2x'x + i/2k(a -. Mx)'(a - Mx).
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The gradient of this function is given by

Vf(x) = x + k(-H')(a - Mx) = x - kH'a + kH'Mx.

Again, for a minimum of f at x*

Vf(x*) = (I + kM'M)x* - kW'a = 0

or x* = (I + kW'M)-l k'a

thTo clarify the structure of M'M, let m i be the i1- row of H represented

as a column vector, mU. the thh element of m. as well as the i,Jth

element of M.
a

Since IM'HM I i = kimkj,

k-l

and ' • = kl [ 1k' 'k2' "'"

m k2

"mkn

'kl~'kl mklUmk2 mklkn

m.kekl mk2nlkl ... k2mkn

m km.kl mknk 2  .. mkn k

it follows that

m
M'1I = I!'

k= 1

Ii)

Now I + kM'M may be represented as I + km m~ and its inverse may be
k= 1

computed recursively by repeated application of the rank-one inversion
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method. Thie question of the existence of (I + kL4') is answered in

Theorem II which follous shortly. Formally, the method of computing

(I + kM'M)-I is derived recursively as follows:

Set C = I D=C I
o o 0

C1 = I •+ km a' D, cmL Do - kDomDLDo

-11 +-

i -1 i hi 1 1 0• l Di-- Dn

-lkD D,
C, C +kmImay' D C, =D, -Il+iW ,i!

C -I + kHM D -C- (I+ kM'M)-l

Note Dm is computed in precisely m steps (m - row order of H) and the C 's

need not be computed since D. can be computed from Di)l, ai and k. For

this problem, x* = D m(kM'a) is the required solution satisfying Vf(x*) = 0.

1. APPLICATION TO AN AIRCRAFT WING-ROOT BENDING PROBLEM

The above rank-one method was used to determine the optimum air-

craft wing control surface deflections required to minimize a specified

penalty function (References 8,9). The objective of the problem was to reduce

wing-root bending moments through active control of trailing edge control

surfaces on the wing. In a physical application such reduced bending

moment loads could lead to reduced structural requirements, thus reducing

the aircraft weight and improving aircraft performance, or alternatively

lead to an expansion of the aircrafL operational envelope. An immediate

consequence of the control surface deflections is to change other im-

portant aircraft wing characteristics, principally lift, pitching moment

34



r

and drag. These also affect aircraft performace.

For nost applicatioes increased lift at a given =Zle-of-attack

is desiz-a;_tle recaase I,- fLc-ease -;- Ter%-iCZa accaýeeeaticna eaa. t* cbtai-el

vith less increase in win angle-of-attack. 7his leads to less drag

and hence more efficient olperation.

Any change in wi3g-generated pitching mament would require changes

in aircraft trim to generate balancing moments. Although trin changes

can be acconplished automatically, this adds system c mplexity and

interface problems. The desire to avoid complexity is notivated by

the usually valid supposition that the nore co ilex system is less re-

aeiable.

From drag considerations and because linear aerodynamic theory

was used, it was desired to restrict the nagnitude of control surface

deflections. Thne use of linear aerodynamic theory, in addition to being

conceptually and computationally simpler, was necessary to provide the

linear system description.

The mathematical model of this problem was formulated as follows:

Changes in wing lift, pitching moment and root bending can be repre-

sented, assuming linear aerodynamics, as a linear function of the control

surface deflections; therefore let 6 = (61, 62, ... , 6n) represent the

deflections of the wing control surfaces, LCL = m16 the change in wing
lift, ACM = m'6 be the change in wing pitching moment, ACRB = m?6 the

change in wing-root bending moment. The following cost function was

formulated whi-.h when minimized would tend to minimize wing-root bending

moment while holding changes in pitching moment small, maximize the

change in lift end maintain reasonable control surface deflections:
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J( IZC) + 51, j~2(W Kp(y~ + 11211&112

,bere the w-ig•r•fg factors, Kl, K2 , ad K3, are ass=ued knus a priori.

The solution to this probles is readily obtained by a single zpplica-

tics of the rank-one method.

Ahlhoqgh the solutions are valid the results are difficult to

interpret due to the fact that each solution represen•s a different wing-

lift condition. The problem uas reformulated at a constant lilt condi-

ticn. Specifically, an increment in angle-of-atLack was incorporated

to allow the wing to generate the sane lift with or without controls

deflected. The more complete representations for the chauges in wing

characteristics are:

CL -e.6 + CI a,

U!m6 + C.Mrs,

ACIM - + C a.

Thus for constant lift ACL = 0 and a CL- ml.

Then the changes in pitching =-sent and wing-root bending at constant

lift are:

,%= m16 - .- U i'6 - M'6

CLa 1 2

='-CRBa

ACR=6B CR3 m'6 = i'6.RB 3 -CL 1 3

Finally, from linear aerodynamic theory, the induced drag of a

wing is minimum when the wing pressure distribution is elliptical.

Therefore, an additional term was inclur.ed to represent the deviation of

36



Ele Predicte prcssure distributio from el tical- Spcifically, tbe

srivise distribatiom as a f~mctlon of rbe nomrulized senisjp= n was

represented as cl(In) -i (e) + c, (ri)i + c,, (q)1 a the elliptical

distribctien as c, li) W Following thbe mre procetre

for correctci the gie-of-atr•ck Se,

2C c ~ cLa R

eI -lip W - - -C--

is is discretized for k spawise locations (i, i=l,.. ,k) then a

measure of the spawise distribution deviation from efliptical is given

by I1o- .16112, ,he

2C _ _I •10 2"] I - , - C1,o o,i)

0c, (n.i)I A IJL.: C 16• (n' -L a

j ~CLax m

and the norm is in R

Finally, rhe following cost function was foraulated to ninisize

wing-root bending, change in pitching moment, control surface deflections

and spanwise distribution error:

J(6) = K (Acn) + K2 (ACM) 2 + 1/2116112n + "v15 jo - A6IIlk

- Klm26 + K3 (-i6)2 + 1/26'6 + K (X - A6)'(A 0 -M6).

The minimum of this function is obtained by computing the gradient and

equating the gradient to zero. The gradient is given by

37



a he w ale of & for wich •VJ•) 0 is eive by

6 = (I + KM +

The inaiizing d can then be cbeained by k1- iterations of the rank-

one mrethod.

In both of the above formuiations of the problen the weighting

factors, Ki's in the cost function are presumed knwn. As is often the

case in this type problem, this is generally not true. Bowever, the

solution to the problem for a given set of Ki's can be ccquted extrenely

rapidly on a digital computer using the rank-one mthod, making a

systematic search over a wide variation of the zeighting factors a

practical approach to obtaining a realistic solution. For exaple, a

program written for the CDC 6600 computer to solve the above problem

computes the basic matrices and vectors required (A,mi's, etc.), incre-

ments the Ki's in a systenatic fashion and computes over 3,000 optimal

6's in approximately 10.0 seconds central processor, CP, tiae. With

such a volume of data, care had to be taken in the search pattern and

output format to avoid an overwhelming ouLput volume.

2. DEIVATIO0] OF THE DIRECT P..l",-ONE ,,=i'HOD

In the preceding development only the solution of the necessary

condition for an extremum, Vf(x*) = 0, was considered. For the simplest

form, a linear combination of quadratic terms with positive coefficients,

if an extremum exists it must be a minimum. The addition of linear terms



cae so particular difficulty si'ce the qtuaratic terms can be ex-

pected to eveatually dzuifate. For the nore geral problem ahere the

weigbting factors are arbitrary, thw ramk-cwe medw also provides

some informatice om the imatre of the solurlc.

For any of the abvwe exa ples the gra4iemt is represented by the

general form Yf(x) = Cx + a, icere C is a matrix and a a vector. The

second derivative is V2z. (x) = C. The folcjig lemma provides infon•a-

dcc ca the positive definiteness of C.

Lema 11

If Ca and Dn= are positive definite,

and I + kuDn%>O, then Cn~1 and Dnrt. are positive definit-.

Proof

For an arbitrary u,u'Du > 0 therefore the ratio

UDn+lU 1- k U _'Dnannu

u'Du u'Du 1 +kr'Da

ku'D a (u'D a )2
=•i n n n fnn

]kaADi (u'Dnu)(nd

By the Cauchy-Schwarz inequality (u'Dnmn) 2 < (U'Du)(m'Dm) m where

equality holds if and only if u is a scalar multLple of m . Cleavly

the ratio _______ 1 if u'Dnmn = 0 and this ratio is furthest frra one
U#DnU

when u is a multiple of mn, in which case
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IVI
u'D Iu + - kMD a

- 1

Leta Min -11 (]L+'=.'Pen)-'I

and IS Max! I. (I + , ,

Then U'VnU< u'Dn.0 .. u f OU'DntU

Also, for Cx C, + k•s'

v'Cn1 w k(v'a) 2n
-1+

v'Cnv v Cnv

2
- I + kzA•hDn (v'%)

(v'Cev) (-;Dnun)

Since C. D -1 and Cnand Dnare positive definite

(v'_n)2 _< (v'Cnv) (,;DýL!d),

where equality holds if and only if v is a scalar multiple of m n Thus
n

the ratio v' v is one if v'm = 0 and furthest from one when v is a
SyCnv ni

multiple of mn in which case

v' Cn+lVI = 1 + km'D m

""eV Cnv n n n1

Let y = Mlin 1 1, 1 + Wm'Dnmn
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an 1 t I fI, I+ imD~p.%

then -v'Cnv v v'Cnv _1: I v'Cov,

Thus the denominator, I + kuDuazn, Provides a necessary and suf-

ficiene, condition for the invertibility of C,+, i.e., the existence of

Dn+j, by Lemna I ane a sufficient candition for Cn+1 and D,+1 to be

positive definite by Leima I1.

Before proceeding to a proof of the rank-one methoc, the following

observations are made to simplify the notation. For the problem of

Minimizing

f = i(xll - I I1 + kjIllla - •xII12m+k2 l1 -A12

the gradient is given by

Vf(x) - 2x + 2k 1C-M')(a - Xx)

+ 2k,(-A')((X-x)

=:2(l + k,' + k2A'A)x - 2k 1M'a - 2.k2i'10

If x* minimizes f then Vf(x*) - 0 and if (I + k]lM* + k2 A'A)-I

exists, then x* = (I + kpH'H + k2 A'A)-l(k 1 Wla + k2 A'lo). Furthermore,

if (I + kpH'H + k2 A'A) is positive definite then f has a local minimum

at x*.

As before let mi. i = 1,2,...,m, be the i--h row of H and Xii=I,

... ,p, be the ith- row of A. Then (I + kPM'M + k2 A'A) can be written as

N
I+ n ivIVi,

i-i

where N m + p
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LFF~.iL=T•1,...-,f

Jefine an Dk recursively for k 0,1,... ,N as follows:

00
Co -I DO= "~ -I

C - Ck-l + %'kkv dk - 1 + qkvjDklvk

Dk" Dk -k Dk-VkVlDkl

Theore'i II

With Ck,dk and Dk as defined above

N(a) Cý + I niviv,'
i-i

(b) so long as d1 • 0, i - 1,...,k

D. - C-1  and in particular for k = N,
k k

N
D11- C (I + )iviv )-

(c) if dk > 0 for all k = 1,2,...,N, DN is

positive definite.

Proof
(a) By construction:

Co = I,

C1 = I + nlvlV
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C2 = C1 + n22v2v•

+' n + Y!V + '2'2v;t

2

k
Ck I + n Tivivi

N
C I + flniVivj-- +

(b) By induction:

Initially C. - I an.. DO C - I. Suppose the assertion

holds for k-i, i.e., Dkl Cj-1, and di 0 0, for i1,...,k-l. Now if

dk # 0, Dk exists by Lemma I and

CkDk - (Ck-. + nkvkvk)(Dk-1 - k Dk-lviVkDk-l)

Ckd k-lDk-1-k -1
"-~lki dki Ck~lD~klVk~Dk_1

+ nkvkvkDk~l - kkk• ~D~

dk

Since CklD _1 I and VkDk.lVk is a scalar, the above may be rewritten

aq nk
CkDk =I - k VkVlDk_1 + flkVkVlDkl

- dk (v'Dklvk)vkv'Dkl
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nk
- I - k VkvkDk- (1 - dk + nkVkDk.lVk)

n I'

Where dk 1 + n kVkDk.lvk is used. Thus the assertion holds for k.

Furthermore, if dk 1 0 for k=3,...,N then Dk - Ck for k=l,...,N and

in particular, from (a),

N
DN. (I + II nviv!)-iui

(c) By induction:

Clearly Do - C-0 1 I is positive definite,

Suppose the assertion holds for k-i, i.e., Dk_l is positive definite.

If dk > 0 then by Lemma Il the ratio u'Dku lies between l and
u'Dk..lu

d-1 > 0 for arbitrary u. Hence, u'Dku is positive for all u which im-
k

Dk is positive definite and the assertion holds for k. If dk > 0 for

all k - 1,...,N then DN is positive definite.

It should be noted that the matrices Ck need not be computed since

Dk and dk can be computed from Dk-l, vk and nk directly. The denominator

dk provides a convenient check: if dk is zero (or sufficieatly small)

then Ck is singular and Dk fails to exist (Dk may be numerically un-

tractable); if dk is positive at every iteration then the resultant ex-

tremum is the minimum since DN is positive definite. However, if dk is

negative for one or more iterations, DN may still be positive definite

since Lemma II provides only a sufficient condition. In fact it may
N

happen that I + f iv v' is invertible, and even positive definite,

however an intermediate Dk may fail to" exist because dk is zero. In

~44



ALFFW-M?-72-77

such a case, a reordering of the steps will correct the difficulty as

shown below.
th

Suppose all steps up to the n---, n<N, have been accomplished and

dn = 1 - r;.vnDn.jvn = 0. Then Vn fails to exist. The role of nnVnn

and nr~ivn+1 vv+l may *e inte-changed, then dn= 1 + nn+I'n+lDn+lVn+l is

computed and presumed non-zero. Then
'In+l

Dn = Dri An IDn-lVn+Iv:-i Dn-i

exists and is the inverse of n Cn= . + n+iVn+l

Now the .- rm qnVnV' is again considered

dn+1 1 + 'nn~ennn

dn+l-1 + (Dn_ - -n Dn...Vn~i~n)Vn

n nl vD n- ~n d -1nln+l n.n n ni n- (in n-1 nni~+i n+

nnnn+l 2
•I (VnDn-lVn+l)

since the first two terms form dn = 0. In general dn+l 0 0 and hence

- T
1n --

D D -_----Dvv'D exists.
n+l ni n nnn

A simple numerical example is presented to illustrate this special

1 1
case. Consider the problem of inverting I - (0)(1,0) + (1) (1,1).

Proceeding as usual, set D = I and compute d = 1 + (-l)(1,0)(0) 1

1 - I = 0.
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Since Di fails to exist, the role of (1,0) and (1,1) are inter-

changed and d is computed as d1 = 1 + (1)(1,1) (1 1 + 2 = 3.

Therefore, 3()(2/3 -1/31

[-l/3 2/3

Now, picking up the first term, 1 + (-l)(1,O)D 1 () - -

and D= VD (1) ( 1/2" 1 1 -
w 2/3 -1/3 /2/3 '

+ 3 _ (2/3, -1/3)

-1/3 2/3

-2 I

The correctness of the solution is readily verified as the inverse of

0-( )( 1,0) + (1 ) 1 l 1 1] .

6 2

4,6
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SECTION V

CONCLUSIONS

The main topic of this dissertation, computational methods for the

solution of unconstrained minimization problems, is coveted in three

parts; generalized descent algorithms, a rank-one minimization technique

for the general problemand a direct rank-one method for a special class

of problems. Although each topic relates to unconstrained minimization,

the scope is successively decreased as the specialization is increased.

The theorem on generalized descent algorithms, Theorem 1, demon-

strates the essential properties of a descent algorithm. Here a descent

algorithm is defined to be a computational method in which, at each iter-

ation, a descent direction is generated and a singie-dimensional search

is conducted for a minimum. Since the setting is highly abstract, addi-

tional specialization is included and the theorem is applied to the three

descent algorithms in common use: the gradient method, conjugate gradients

and the Fletcher-P6well method. The essential property of descent

algorithms, choosing a 'es!ent direction and the search for a minimum at

each iteration, is sufficient to cause the sequence of function values

to monotonically decrease. An additional property is required to assure

the derivative of t e function goes to zero.

The descent direction generated by the algorithm must be strict in

the sense that convergence of the inner product (f'(x),ý(x)].to zero

must imply convergence of the derivative to zero. This condition is made

rigorous in condition (ii) required of the function p. This condition

and the uniform continuity of the derivative f' are used to demonstrate

the derivative must converge to zero.
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Although Theorem I demonstrates the common properties of descent

algorithms, it fails to provide any Information on one very important

property of all such algorithms, conve;'genLe rate. Convergence rate

involves not only the amount of improvement at each iteration but also,

for very practical reasons, the computational time required to accomplish

the iterations.

One of the common properties of descent algorithms, the single-

dimensional search can also be a drawback in that this is generally the

most time consuming step of each iteration. Therefore an algorithm

which minimizes a function without requiring repeated single-dimensional

searches for a minimum might 1e superior to any descent method. One

such method, Davidon's Variance Algorithm (Reference 13), has been shown to be, in

many cases, superior to the three common descent algorithms (Reference 11).

Davidon's method is discussed in Section III.

A new derivation of Davidon's method is presented. This deriva-

tion provides a clearer insight into the structure of the algorithm by

considering the algorithm as repeated applications of the rank-one matrix

inversion technique. Although the rank-one method would be exact when

applied to a quadratic form and would require no single-dimensional

search, certain added computational precautions must be included if the

method is to be used to minimize an arbitrary function. One of these is

provided by Davidon and assures the matrix approximation to the inverse

of the Hessian is well behaved. Another precaution provided by this

author assures only "good" estimates of tLe solution are used to update

the approximation of the inverse of the Hessian. Although a linear

search is involved, only the function value is computed and the function

need only be decreased not minimized. As a result, for each iteration
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both the nunber of test points is reduced and the complexity of coqup-

tations at each test point is reduced.

An extension of the Davidon algorithm to the problem of miniiz-

ing an arbitrary function defined on an infinite dimensioned space such

as a functior space is highly interesting. In the finite dimensional

case the outer product of vectors, uv', can be represented as a natrix.

If u and v belong to a function space, the representation of uv" is not

entirely obvious. Bowever, since most problems require digital computa-

tion, and the representation of a function is necessarily discretized,

the function space may be considered as RN with I very large.

The third area considered in this dissertation applies the rank-

one method to a special class of problems. Although the class of prob-

lems to which the method applies is specialized, it is not uncommon.

In fact many preliminary engineering problems are in this class where

the cost function is a combination of linear and quadratic terms each

weighted by a penalty factor which is constant but unknown. The rank-

one method provides a rapid solution to the problem. The method also

provides necessary and sufficient tests for the existence of an extre-

mum and a sufficient test for the solution to be a minimum.

Extension of the direct rank-one method to problems in a function

space is of continuing interest to the author. As noted for the ex-

tension of Davidon's method, care must be observed in the interpreta-

tion of the outer product. Since the number of iterations of rank-one

required to obtain the solution is determined by the structure of the

cost function to be minimized, not the dimension of the underlying vector

space, application of the method in a function sp.ace has possibilities.
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To date the class of problems in a function space which my be solved

by the rank-one method is very restricted aid the set of knoun appU-

cations is empty. Finally, the problem of representing functions on a

digal cputer still exists.

To sumarize, the following extensions appear to be pr'misirg

areas for further Investigation. Application of Theorem I -:o other

descent algorithms. Application of Dayidon's rank-one method to a large

sample of test problems to determine in a practical application Its

computational speed. Application of Davidon's method in a function space

might be fruitful if first the direct rank-one method can be successfully

applied.
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